Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 2(3): 100736, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34430911

RESUMO

It is often necessary to learn whether macromolecules occupy a fixed place in cells. This protocol makes it possible to learn whether individual nucleolar proteins in S. cerevisiae remain in place or depart from and return to the nucleolus. The protocol uses early zygotes in which parental nucleoli are separate for at least one hour. The protocol demonstrates that the localization of many nucleolar proteins is in fact highly dynamic. Photobleaching is not required. For complete details on the use and execution of this protocol, please refer to Tartakoff et al. (2021).


Assuntos
Nucléolo Celular/metabolismo , Técnicas Citológicas/métodos , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae , Zigoto , Nucléolo Celular/química , Proteínas Nucleares/análise , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Zigoto/citologia , Zigoto/metabolismo
2.
STAR Protoc ; 2(3): 100646, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34286287

RESUMO

S. cerevisiae can be arrested in metaphase by depleting Cdc20. We describe (1) how to achieve this arrest and verify it, (2) how to label cell surface glycans covalently to distinguish mother from bud, and (3) how to detect the nucleolus and learn that it remains in the mother domain upon arrest. For complete details on the use and execution of this protocol, please refer to Tartakoff et al. (2021), Rai et al. (2017), and Zapanta Rinonos et al. (2014).


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Parede Celular , Técnicas Citológicas/métodos , Saccharomyces cerevisiae , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Parede Celular/química , Parede Celular/genética , Parede Celular/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coloração e Rotulagem
3.
Genetics ; 208(1): 139-151, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150427

RESUMO

We have investigated an extreme deviation from the norm of genome unification that occurs during mating in the yeast, Saccharomyces cerevisiae This deviation is encountered when yeast that carry a mutation of the spindle pole body protein, Kar1, are mated with wildtype cells. In this case, nuclear fusion is delayed and the genotypes of a fraction of zygotic progeny suggest that chromosomes have "transferred" between the parental nuclei in zygotes. This classic, yet bizarre, occurrence is routinely used to generate aneuploid (disomic) yeast. [kar1 × wt] zygotes, like [wt × wt] zygotes, initially have a single spindle pole body per nucleus. Unlike [wt × wt] zygotes, in [kar1 × wt] zygotes, the number of spindle pole bodies per nucleus then can increase before nuclear fusion. When such nuclei fuse, the spindle pole bodies do not coalesce efficiently, and subsets of spindle pole bodies and centromeres can enter buds. The genotypes of corresponding biparental progeny show evidence of extensive haplotype-biased chromosome loss, and can also include heterotypic chromosomal markers. They thus allow rationalization of chromosome "transfer" as being due to an unanticipated yet plausible mechanism. Perturbation of the unification of genomes likely contributes to infertility in other organisms.


Assuntos
Aneuploidia , Genoma Fúngico , Saccharomyces cerevisiae/genética , Núcleo Celular , Centrômero/genética , Centrômero/metabolismo , Cromossomos Fúngicos , Imunofluorescência , Haplótipos , Perda de Heterozigosidade , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Corpos Polares do Fuso/metabolismo
4.
Eukaryot Cell ; 13(11): 1393-402, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25172767

RESUMO

In many organisms, the geometry of encounter of haploid germ cells is arbitrary. In Saccharomyces cerevisiae, the resulting zygotes have been seen to bud asymmetrically in several directions as they produce diploid progeny. What mechanisms account for the choice of direction, and do the mechanisms directing polarity change over time? Distinct subgroups of cortical "landmark" proteins guide budding by haploid versus diploid cells, both of which require the Bud1/Rsr1 GTPase to link landmarks to actin. We observed that as mating pairs of haploid cells form zygotes, bud site specification progresses through three phases. The first phase follows disassembly and limited scattering of proteins that concentrated at the zone of cell contact, followed by their reassembly to produce a large medial bud. Bud1 is not required for medial placement of the initial bud. The second phase produces a contiguous bud(s) and depends on axial landmarks. As the titer of the Axl1 landmark diminishes, the third phase ultimately redirects budding toward terminal sites and is promoted by bipolar landmarks. Thus, following the initial random encounter that specifies medial budding, sequential spatial choices are orchestrated by the titer of a single cortical determinant that determines whether successive buds will be contiguous to their predecessors.


Assuntos
Divisão Celular/genética , Polaridade Celular/genética , Células Germinativas/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Actinas/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Diploide , Haploidia , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
5.
Cell Rep ; 3(1): 223-36, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23273916

RESUMO

Fusion of haploid cells of Saccharomyces cerevisiae generates zygotes. We observe that the zygote midzone includes a septin annulus and differentially affects redistribution of supramolecular complexes and organelles. Redistribution across the midzone of supramolecular complexes (polysomes and Sup35p-GFP [PSI+]) is unexpectedly delayed relative to soluble proteins; however, in [psi-] × [PSI+] crosses, all buds eventually receive Sup35p-GFP [PSI+]. Encounter between parental mitochondria is further delayed until septins relocate to the bud site, where they are required for repolarization of the actin cytoskeleton. This delay allows rationalization of the longstanding observation that terminal zygotic buds preferentially inherit a single mitochondrial genotype. The rate of redistribution of complexes and organelles determines whether their inheritance will be uniform.


Assuntos
Citoplasma/metabolismo , Padrões de Herança , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Polaridade Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Difusão , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Mutação/genética , Polimerização/efeitos dos fármacos , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , Príons/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Solubilidade , Tiazolidinas/farmacologia , Fatores de Tempo , Zigoto/efeitos dos fármacos , Zigoto/metabolismo
6.
Mol Biol Cell ; 20(12): 2932-42, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19369416

RESUMO

When haploid cells of Saccharomyces cerevisiae are crossed, parental nuclei congress and fuse with each other. To investigate underlying mechanisms, we have developed assays that evaluate the impact of drugs and mutations. Nuclear congression is inhibited by drugs that perturb the actin and tubulin cytoskeletons. Nuclear envelope (NE) fusion consists of at least five steps in which preliminary modifications are followed by controlled flux of first outer and then inner membrane proteins, all before visible dilation of the waist of the nucleus or coalescence of the parental spindle pole bodies. Flux of nuclear pore complexes occurs after dilation. Karyogamy requires both the Sec18p/NSF ATPase and ER/NE luminal homeostasis. After fusion, chromosome tethering keeps tagged parental genomes separate from each other. The process of NE fusion and evidence of genome independence in yeast provide a prototype for understanding related events in higher eukaryotes.


Assuntos
Núcleo Celular/metabolismo , Genoma Fúngico/genética , Fusão de Membrana , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Zigoto/citologia , Zigoto/metabolismo , Cruzamentos Genéticos , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Membrana/metabolismo , Mutação/genética , Poro Nuclear/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
PLoS One ; 2(11): e1200, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18030334

RESUMO

In many high complexity systems (cells, organisms, institutions, societies, economies, etc.), it is unclear which components should be regulated to affect overall performance. To identify and prioritize molecular targets which impact cellular phenotypes, we have developed a selection procedure ("SPI"-single promoting/inhibiting target identification) which monitors the abundance of ectopic cDNAs. We have used this approach to identify growth regulators. For this purpose, complex pools of S. cerevisiae cDNA transformants were established and we quantitated the evolution of the spectrum of cDNAs which was initially present. These data emphasized the importance of translation initiation and ER-Golgi traffic for growth. SPI provides functional insight into the stability of cellular phenotypes under circumstances in which established genetic approaches cannot be implemented. It provides a functional "synthetic genetic signature" for each state of the cell (i.e. genotype and environment) by surveying complex genetic libraries, and does not require specialized arrays of cDNAs/shRNAs, deletion strains, direct assessment of clonal growth or even a conditional phenotype. Moreover, it establishes a hierarchy of importance of those targets which can contribute, either positively or negatively, to modify the prevailing phenotype. Extensions of these proof-of-principle experiments to other cell types should provide a novel and powerful approach to analyze multiple aspects of the basic biology of yeast and animal cells as well as clinically-relevant issues.


Assuntos
Seleção Genética , DNA Complementar , Fenótipo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...